qdrant_vector
AsyncQdrantVector
Source code in src/agere/addons/qdrant_vector.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
|
add(collection_name, documents, names=None, categories=None, kinds=None, created_datetimes=None, updated_datetimes=None, metadata=None, ids=None, batch_size=32, parallel=None, **kwargs)
async
Adds text documents into qdrant collection. If collection does not exist, it will be created with default parameters. Metadata in combination with documents will be added as payload. Documents will be embedded using the specified embedding model.
If you want to use your own vectors, use upsert
method instead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
Name of the collection to add documents to. |
required |
documents |
Iterable[str]
|
List of documents to embed and add to the collection. |
required |
names |
Iterable[str | None]
|
Specify the corresponding name. It is part of the metadata. Default to None. |
None
|
categorys |
Iterable[str | None] | None
|
Specify the corresponding category. It is part of the metadata. Default to None. |
required |
kinds |
Iterable[str | None] | None
|
Specify the corresponding kind. It is part of the metadata. Default to None. |
None
|
created_datetimes |
Iterable[datetime | None]
|
The time of creation. If not specified, it will be generated automatically. |
None
|
updated_datetimes |
Iterable[datetime | None] | None
|
The time of modification. If not specified, it will be generated automatically. |
None
|
metadata |
Iterable[Dict[str, Any]] | None
|
List of other metadata dicts. Defaults to None. |
None
|
ids |
Iterable[ExtendedPointId] | None
|
List of ids to assign to documents. If not specified, UUIDs will be generated. Defaults to None. |
None
|
batch_size |
int | None
|
How many documents to embed and upload in single request. Defaults to 32. |
32
|
parallel |
Optional[int] | None
|
How many parallel workers to use for embedding. Defaults to None. If number is specified, data-parallel process will be used. |
None
|
Raises:
Type | Description |
---|---|
ImportError
|
If fastembed is not installed. |
Returns:
Type | Description |
---|---|
list[str | int]
|
List of IDs of added documents. If no ids provided, UUIDs will be randomly generated on client side. |
Source code in src/agere/addons/qdrant_vector.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
|
count(collection_name, count_filter=None, exact=True)
async
Count points in the collection.
Count points in the collection matching the given filter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
name of the collection to count points in |
required |
count_filter |
Filter | None
|
filtering conditions |
None
|
exact |
bool
|
If |
True
|
Returns: Amount of points in the collection matching the filter.
Source code in src/agere/addons/qdrant_vector.py
create_collection(collection_name, vectors_config=None, sparse_vectors_config=None, init_from_collection_name=None, **kwargs)
async
Creates empty collection with given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
The name of the collection to create. |
required |
vectors_config |
VectorParams | Mapping[str, VectorParams] | None
|
Specify vectors config. Left to be None if using fastembed. |
None
|
sparse_vectors_config |
Mapping[str, SparseVectorParams] | None
|
Specify the sparse vectors config. |
None
|
init_from_collection_name |
str | None
|
Use data stored in another collection to initialize this collection. |
None
|
Returns:
Type | Description |
---|---|
bool
|
Operation result. |
Source code in src/agere/addons/qdrant_vector.py
delete(collection_name, filter)
async
Delete the records selected by the filter.
Source code in src/agere/addons/qdrant_vector.py
delete_collection(collection_name)
async
Deletes a collection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
The name of the collection to delete. |
required |
Source code in src/agere/addons/qdrant_vector.py
does_collection_exist(collection_name)
async
Checks if a collection exists.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
The name of the collection to check. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the collection exists; otherwise, False. |
Source code in src/agere/addons/qdrant_vector.py
get_all_collections()
async
Gets the list of collections.
Returns: The list of collections.
Source code in src/agere/addons/qdrant_vector.py
get_collection(collection_name)
async
Gets the a collections based upon collection name.
Returns:
Name | Type | Description |
---|---|---|
CollectionInfo |
CollectionInfo
|
Collection Information from Qdrant about collection. |
Source code in src/agere/addons/qdrant_vector.py
get_collection_info(collection_name)
async
metadata_filter(names=None, categories=None, kinds=None, created_datetime_range=(None, None), updated_datetime_range=(None, None), document_texts=None)
Generate the corresponding filter based no the conditions.
Within each option, the logic is 'OR', and between multiple options, the logic is 'AND'.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names |
list[str] | None
|
Filter by name. |
None
|
categories |
list[str] | None
|
Filter by category. |
None
|
kinds |
list[str] | None
|
Filter by kind. |
None
|
created_datetime_range |
tuple[datetime | None, datetime | None]
|
Filter by creation time, which is a tuple with the first time as the start time and the second time as the end time. |
(None, None)
|
updated_datetime_range |
tuple[datetime | None, datetime | None]
|
Filter by modification time, which is a tuple with the first time as the start time and the second time as the end time. |
(None, None)
|
document_texts |
list[str] | None
|
Filter by text content. Note that when there are multiple text contents, it means the entries that match must contain all these text contents simultaneously. |
None
|
Returns:
Type | Description |
---|---|
Filter
|
The filter. |
Source code in src/agere/addons/qdrant_vector.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
|
query(collection_name, query_text, query_filter=None, limit=5, score_threshold=None, return_text=True, **kwargs)
async
Search for documents in a collection.
This method automatically embeds the query text using the specified embedding model.
If you want to use your own query vector, use search
method instead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
Collection to search in |
required |
query_text |
str
|
Text to search for. This text will be embedded using the specified embedding model. And then used as a query vector. |
required |
query_filter |
Filter | None
|
Exclude vectors which doesn't fit given conditions.
If |
None
|
limit |
int
|
How many results return |
5
|
score_threshold |
float | None
|
Return only results that exceed this score. If it is None, no score filtering is applied. Default to None. |
None
|
return_text |
bool
|
Only return document text if True. |
True
|
**kwargs |
Additional search parameters. See |
{}
|
Returns:
Type | Description |
---|---|
list[QueryResponse] | list[str]
|
list[types.ScoredPoint] | list[str]: List of scored points. |
Source code in src/agere/addons/qdrant_vector.py
query_batch(collection_name, query_texts, query_filter=None, limit=5, score_threshold=None, return_text=True, **kwargs)
async
Search for documents in a collection with batched query. This method automatically embeds the query text using the specified embedding model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
Collection to search in |
required |
query_texts |
list[str]
|
A list of texts to search for. Each text will be embedded using the specified embedding model. And then used as a query vector for a separate search requests. |
required |
query_filter |
Filter | None
|
Exclude vectors which doesn't fit given conditions.
If |
None
|
limit |
int
|
How many results return |
5
|
score_threshold |
float | None
|
Return only results that exceed this score. If it is None, no score filtering is applied. Default to None. |
None
|
return_text |
bool
|
Only return document text if True. |
True
|
**kwargs |
Additional search parameters. See |
{}
|
Returns:
Type | Description |
---|---|
list[list[QueryResponse]] | list[list[str]]
|
list[list[QueryResponse]] | list[list[str]]: List of lists of responses for each query text. |
Source code in src/agere/addons/qdrant_vector.py
recreate_collection(collection_name, vectors_config=None, sparse_vectors_config=None, **kwargs)
async
Delete and create empty collection with given parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
The name of the collection to create. |
required |
vectors_config |
VectorParams | Mapping[str, VectorParams] | None
|
Specify vectors config. Left to be None if using fastembed. |
None
|
sparse_vectors_config |
Mapping[str, SparseVectorParams] | None
|
Specify the sparse vectors config. |
None
|
Returns:
Type | Description |
---|---|
bool
|
Operation result. |
Source code in src/agere/addons/qdrant_vector.py
scroll(collection_name, scroll_filter=None, limit=10, with_payload=True, with_vectors=False, order_by=None)
async
Scroll over all (matching) points in the collection.
This method provides a way to iterate over all stored points with some optional filtering condition. Scroll does not apply any similarity estimations, it will return points sorted by id in ascending order.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
collection_name |
str
|
Name of the collection |
required |
scroll_filter |
Filter | None
|
If provided - only returns points matching filtering conditions |
None
|
limit |
int
|
How many points to return |
10
|
with_payload |
bool | Sequence[str] | PayloadSelector
|
|
True
|
with_vectors |
bool | Sequence[str]
|
|
False
|
order_by |
OrderBy | None
|
Order the records by a payload key. If |
None
|
Returns:
Type | Description |
---|---|
list[Record]
|
A pair of (List of points) and (optional offset for the next scroll request). |
PointId | None
|
If next page offset is |
Source code in src/agere/addons/qdrant_vector.py
split(text)
Split the text.
When specified a splitter, it will use that splitter to split the text, otherwise, return the original text as a list.